BOLT BERANEK AND NEWMAN inc

C ON S UL TI NG - D EV ELOPMENT . R E S E AR CH

THE HOSPITAL COMPUTER PROJECT
TIME-SHARING EXECUTIVE SYSTEM

Report Number 1673
April 1968

CAMBRIDGE NEW YORK CHICAGDO LOS ANGELES

¥

THE HOSPITAL COMPUTER PROJECT
TIME-SHARING EXECUTIVE SYSTEM

Medical Information Technology Department
Bolt Beranek and Newman Incorporated
Cambridge, Massachusetts 02138

Report Number 1673
April 1968

The work described in this document received support through a
contract, PH43-62-850, from the Institute of General Medical
Sciences, National Institutes of Health, and through a grant
from the American Hospital Association.

Report No. 1673 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

List Of Figures ee e s a0 ev s s 0o dleseeosr s essss 000000008 s0000e00 e 1v
List OfTableS © 6 0 0 0 00 0 0 0 000 0000 00 @ 6 © 0 00 6 08060008 0 ¢ 0 0800000 0o v

Preface ® @ 0o 0 0 0 0 0 LR RE RN B 2 RN RN Y I B I R B AR 2R B I I I I I I I B Y B B B B B I I I B I] vi

Introduction cecavecesssecsessesssstetnsesabtsenss e 1

I. The Hardware Environmentc.cceeeevessescccssccscacs 5
II. The SwWapper certesneaans ceeereccesesrenssssssenn e 15
III. The Dispatchercceeecaee cecesenae tetetsecacesenannn 30
IV. The I-O ProcesSSOr ..e.cecsssscccns teevecesscs e ceseeas .o 35
V. Teletype Service Routine and Other "Slow" I-0c... 46

Report No. 1673 Bolt Beranek and Newman Inc

LIST OF FIGURES

page

Figure 1. Interconnection of processors
andmemory banks "...l...‘l.....".l...l.......‘. 8

2. ROund-I‘Obin queue © 5 0 2 5 0 0 0 0 0 0 9 S0P N L LSOO LS e e 16
. Multilevel QUEUE ...icevveesocesonncancscssccasncss 1T

. Swapper flow diagrameeeceecccscssncsseoss 26

3
y

! 5. Item format in COre MEMOTY +eeveeesesssncenceaecsss 38
i |

. Block and item formats on Fastrand drum -38

iv

Report No. 1673 Bolt Beranek and Newman Inc

LIST OF TABLES

page
I. Interrupt priorities ...cceceeeevscccscs cesessescssssses 11
II. Buffer allocation for slow I-O devices ceesesssss UT

Report No. 1673 Bolt Beranek and Newman Inc,.

PREFACE

The technical developments described in this report reflect mainly
the contributions made by Bolt Beranek and Newman Inc. (BBN) to

a joint research effort performed in collaboration with The Mass-
achusetts General Hospital (MGH) during the period 1962-1968,

The Hospltal Computer Project was initiated by Jordan J. Baruch,
who organized and directed a staff of about 30 persons to perform
BBN's part of the effort. Continuing direction at BBN during the
past two years has been provided by Paul A, Castleman and Frank

E. Heart. The Project's Time-Sharing Executive System was de-
signed and implemented by Sheldon Bolilen, Steven R. Welss, Charles
R, Morgan, Bernard P. Cosell, Jonathan G. Cole, and Andrew P.
Munster . Thils report was written by Alexander A, McKenzie.

That part of the effort contributed by the Hospital was super-
vised first by E. Michael White, Assistant Director of the MGH,
and subsequently by G. Octo Barnett, M.D., Director of the Labora-
tory of Computer Science of MGH. This essential hospital-cen-
tered contribution to the combined research effort was enabled

by the backing and encouragement given by The Massachusetts
General Hospltal through the office of its director, John H.
Knowles, M.D.

vi

Report No. 1673 Bolt Beranek and Newman Inc.

INTRODUCTION

The Hospital Computer System 1s viewed in several different ways
by the various groups of people who use it. To the hospital
staff, 1t 1s an information-handling system which interacts with
them in a question and answer form of English dialogue. Appli-
cation programmers at Bolt Beranek and Newman Inc. (BBN) view
the system as a time-shared computer with a programming language
and debugging facilities. The BBN systems programmer sees a
collection of hardware elements (central processor, drums, tapes,
Teletypes, etc.) which must be converted into a time-shared com-
uter facllity.

This report describes the time-shared computer facility which

the systems programmers have created. The report 1s directed
primarily toward those readers who are investigating the concepts
necessary for construction of a time-sharing system. With this
point of view in mind, machine-dependent descriptions have been
avoilded when they are not essential; hence, this is not a main-
tenance manual for the BBN system. On the other hand, it is
assumed that the reader is familiar with the terminology and
techniques of programming and time-sharing in general.

A scale of over-all complexity can be constructed for the class-
ification of present time-sharing systems. At one end of this
scale are systems such as the SABRE airline reservation system;
users of SABRE interact with a small set of rigidly defined pro-
grams which perform prespecified functions of information storage
and retrleval in a massive but simple data base. Users of this
type of system are actually sharing an application function, At
the other end of thls scale are systems like MIT's Project MAC

Report No. 1673 Bolt Beranek and Newman Inc.

in which the users actually share the computer hardware. These
systems are capable of handling a wide variety of tasks, many
large independent data bases, automatic assignment of almost un-
limited memory to any task requiring it, and perhaps a multi-
plicity of central processor units as well. '

Although the Hospital Computer System is not as large as Project
MAC, 1t is conceptually much closer to that end of the scale

than it is to systems like SABRE. It includes both special-
purpose functions deslgned for use by hospital personnel and
general-purpose functions which are avallable to modify and extend
special-purpose functions. "Automatic'" memory assignment includes
only one segment of 4096 (4K) 18-bit words. There is only one
language, a macro-assembly language, avallable to applications
programmers. The data structure is oriented toward the partic-
ular storage and retrieval problems of the hospital. On the

other hand, many users may be performing unrelated tasks at the
same time. They can access one of several data bases; these

data bases may be privately owned and confidential or they may

be public and accessible by many users simultaneously. Thus,
while the hospital computer system is directed toward a single
goal, servicing a hospital, it permits a wide variety of differ-
ent tasks to be performed simultaneously. Systems programmers,
applications programmers, and hospital personnel are generally

all working with the system at any given time.

The time-sharing operating system (Executive System) described
in this report is the third hospital time-sharing operating system
developed at BBN. It was first put into operation in May 1966
and has been 1in service operation since December of that year.

In its first 15 months of operation, the system was scheduled

Report No. 1673 Bolt Beranek and Newman Inc.

for full use by The Massachusetts General Hospital an average of
100 hours per week and had an over-all up-time average of 97 per-
cent.

This report is divided into five sections. The first describes
the hardware environment of the Executive System. No attempt

has been made in Section I to specify the machine completely;

only those elements that were designed specifically for time-
sharing operation have been treated at length. The other sections
describe the software routines that comprise the Executive System.

The second sectlon describes the multiprogramming software, the
"Swapper," in great detail. It is felt that the detail contained
in this Section will enable others to learn from the problems
encountered during this project.

The third section describes the method of linkage from user pro-
grams to user-oriented subroutines in Executive core memory.
This linkage 1s accomplished through a routine, activated by
privileged-instruction trap loglc, which dispatches the privi-
leged instruction to the appropriate subroutine —— and therefore
is called the "Dispatcher."

The fourth and fifth sections describe the various system I-O
facilities. The fourth section covers the bulk-storage I-O rou-
tines, collectively known as the "I-O Processor." These routines
must deal with the problem of interleaving many users' requests
for a single device. The fifth section describes the I-O routines
for devices such as the Teletypes and paper-tape reader/punch
which are used by only one user at a time. Magnetic-tape I-O,
however, is described in the fourth section because of the close

Report No. 1673 Bolt Beranek and Newman Inc.

interrelationship between the magnetic-tape and bulk-storage-

drum hardware.

Report No. 1673 Bolt Beranek and Newman Inc.

I. THE HARDWARE ENVIRONMENT

The computer chosen as the baslis for the Hospital Computer System
was a PDP-1, manufactured by the Digital Equipment Corporation.
The PDP-1 is a 5-microsecond, 18-bit computer. Each instruction
occupies one word, allowing 12 bits of address information. The
basic memory module consists of 4096 (4K) words. In order to
meet the demands of time-~sharing, this computer has been exten-
sively modified, The cost of the modifications can reasonably
be used as a measure of their scope; central-processor modifi-
cations alone cost as much as the purchase price of the unmodi-
fied PDP-1. The total cost of the system hardware 1s about one
million dollars.

In addition to the central processor unit (CPU), the system in-
cludes two other processorlike devices, the program-swapping
drum and the Data Channel. Both of these devices have the abil-
ity to make direct memory accesses without the use of CPU cir-
cuitry. Thus, three independent processes may be occurring si-
multaneously; this multiprocessing capabllity greatly increases
the efflciency of the time-sharing system.

The program-swapping drum 1s divided into thirty-two U4K-word
fields. The drum is capable of exchanging 4K of core storage
for UK of drum storage in 35 milliseconds. That is, during one
revolution of the drum, a UK core-memory module can be written
onto one drum field and another drum field can simultaneously
be written into the same memory module. This type of swapping
technique has been more or less central to most time-sharing

systems which permit a variety of tasks with limited memory.

Report No. 1673 Bolt Beranek and Newman Inc.

The Data Channel 1s a high~-speed I-0 device used for transfers

to and from bulk storage. Once 1t has been activated by an I-0
command from the central processor, this device has the ability
to make direct memory references for data transfers or for addi-
tional I-0 commandg. Thils latter capabllity allows the Data
Channel to perform logically-complex I-O operations under program
control without interrupting the CPU., Attached to the Data Chan-
nel 1s a Fastrand bulk-storagé drum which provides approximately
60-million 6-bit characters of storage for random-access file-
handling (and overflow from the swapping drum) at a l.l-megacycle-
per-second bit-transfer rate., In addition, two magnetic-tape
units are attached to the Data Channel; they provide long-term
bulk storage and a certain amount of system backup. The bulk
drum, the tape units, and the controllers for these devices were
acquired from the Univac Division of Sperry Rand Corporation;
they also designed and built the Data Channel to BBN specifica-
tions.

As previously described, the PDP-1 computer 1s supplied with
12-bit addressing and a 4K memory module. A standard option
allows special "extended addressing" (utilizing indirect address-
ing) to obtain 16-bit addresses; thus, the computer can address

a maximum of 64K. Normally, all memory references are made
through one memory buffer register and one memory address reg-
ister. The swapping drum, because of its high transfer rate,
requires exclusive use of these registers during its read/write
time of 35 milliseconds, making multiprocessing impossible during
each program swap. This situation 1s intolerable not only because
of decreased system capacity but also because of the possible

loss of incoming information owing to the inability of the memory
to receive 1it.

Report No., 1673 Bolt Beranek and Newman Inc.

To meet the problem of the swapping drum's monopolizing the
system, an independent memory scheme was established to divide
the potential 64K of memory into four 16K banks, each composed
of four 4K modules. The actual memory configuration on the Hos-
pital Computer System is one bank of 16K words (4 modules) for
the Executive System and two banks each containing 4K words (1
module) for the user programs. Each of the banks has its own
independent memory buffer register anq memory address register.
Logically, memory 1s treated very much like a pilece of I-0O gear;
that is, a processor makes a request to memory for a piece of
data or transmits a piece of data to memory for storage. The
memory control also has priority logic to permit more than one pro-
cessor to make access to the same memory bank, in the order of
the immediacy of the processor's requirements. The swapping
drum has the highest priority and therefore can interrupt either
of the other two processors (although in actual operation the
swapping drum should never need to access a bank being used by
another processor). The Data Channel has priority over the
central processor.

With this independent memory scheme, one user program may run

in one of the 4K banks while another user program is being
swapped into the other 4K bank. Hence, swapping and computation
may occur simultaneously. Similarly, a user program in one of
these banks may be doing a bulk-storage I-0 operation (via the
Data Channel) while a second program is being swapped into the
other UK bank (see Fig. 1). In any case, however, the central
processor always has access to the Executive memory bank and the
interrupt-handling routines which reside there. This implies
that by allocating some of Executive core memory to small buffers
for the Teletype communications lines and other non Data Channel

Report No. 1673 Bolt Beranek and Newman Inc.

PROCESSORS

64
TELETYPES] CPU A B c
\ SWAPPING)
DRUM / D E F
FASTRAND
DRUM
DATA .
. CHANNEL 5 H 1
MAGNETmJ
TAPE
DRIVES
CORE USER BANK USER BANK
MRy NO.1 NO.2
LEXECUT!VE BANK
FIGURE 1. Interconnection of processors and memory banks.

Each of the points on the Figure, labeled A through I, is a poss-
ible processor/memory connection. For example, at some time con-
nections might be made at points B and F; 1in this case, the pro-
gram in User Memory Bank No. 1 is running while another program

is being swapped into User Memory Bank No. 2. At another time,
connections might be made at points A, E, and I; this is the case
where the routines in Executive Memory are handling interrupts,
the program in User Memory Bank No. 2 is performing a bulk-storage
I-0 operation via the Data Channel, and another program is being
swapped into User Memory Bank No. 1.

—

Report No. 1673 Bolt Beranek and Newman Inc.

I-0 devices (paper-tape reader and punch, line printer, etc.)
the system can handle these devices at maximum transmission rates
without special hardware buffering.

Because 1t could not be known in advance in which bank the user
would be running, 1t was necessary to add four 2-bit rename reg-
isters, which are essentially relocation registers or page reg-
isters. These rename registers work in the following manner. If
the computer makes a memory reference to bank O, then the contents
of rename register O are substituted for the bank address and,
hence, the memory reference will go to the physical bank specified
by the contents of rename register 0. This mode of operation
eliminates the need for multiple-level indirect addressing and
gives all the relocation facilities that are needed at present.

Another important set of modifications to the original PDP-1 are
the interrelated hardware components which provide for an inter-
rupt (or sequence-break) system, privileged-instruction trap, and
memory protection. The Hospital Computer System includes a 16-
level interrupt system with a wired-in priority schedule. When an
interrupt is received, the hardware determines 1f any higher-
priority interrupt is already being serviced and, if not, honors
the new interrupt. If a higher-priority interrupt is being ser-
viced, the new interrupt 1s stored; it is honored as soon as it
becomes the highest-priority interrupt requesting service. Inter-
rupts may be initiated by such mechanical activities as the posi-
tioning of the paper-tape reader or a completion pulse from a
paper-tape punch or console typewriter, by electrical activities
such as the ticks of the 32-millisecond clock and the l-minute
clock, by signals from other processorlike devices such as the

data cnannel or thne swapping drum, by the instruction-trap logic,

Report No. 1673 Bolt Beranek and Newman Inc.

or by interrupt commands coded 1n the Executilve,

When an interrupt is honored, the live registers (e.g., the
accumulator) associated with the interrupted program are auto-
matically saved in Executive memory at locations unique to the
priority level at which the interrupt occurred. Thus, even if
an interrupt-handling routine is itself interrupted, there is

no loss of information. Since these registers are stored in
memory, they can be altered by the Executive routines if desired.
At the conclusion of processing an interrupt, the Executive rou-
tine (which was started by the interrupt) executes a "debreak"
instruction, signaling the interrupt hardware that lower-priority
interrupts may be honored.

The assignment of priorities carries with it no connotation of
importance but rather the connotation of immediacy, as determined
by the characteristics of the device producing the interrupt.

For example, if the Data Channel has been looking for a partic-
ular word on the rotating drum and suddenly finds it, 1ts signal
to the central processor for attention must be handled immediately
lest a complete rotation of the drum be required before the in-
formation can actually be transferred. On the other hand, there
is no immediacy in the start of the search for a word and, hence,
initiation of such a search can take place on a low-priority
interrupt level. (Although the priority organization may not
allow an interrupt to be honored when it 1s received, the request
will be saved and honored when it becomes the highest-priority
interrupt which is requesting service,) Based on this concept

of immediacy, the activities assigned to the various priority
levels are listed in descending order of priority in Table I.

It should be mentioned here that all Executive routines are

Report No. 1673 Bolt Beranek and Newman Inc.

started by interrupts received by the priority-interrupt hardware.

Linked to the interrupt system are the hardware components which
protect the computer system from user=issued "privileged" in-

TABLE I. Interrupt priorities.

Priority Source of Report Section
(Octal) Interrupt Describing Routine
p unused (highest priority)
1 high-speed data channel I-0 Processor
2 paper-tape reader Teletype, etc.
3 line printer Teletype, etc.
L I-0 controller commands I-0 Processor
5 program«swapping drum Swapper
6 terminal scanner Teletype, etc.
7 one-second clock Dispatcher
19 one-minute clock Dispatcher
11 unused
12 paper-tape punch Teletype, etc.
13 unused
14 console typewriter Teletype, etc,
15 I-0 processor program I-O0 Processor
16 privileged-instruction Dispatcher
trap
17 32-millisecond clock Swapper

11

Report No. 1673 Bolt Beranek and Newman Inc.

structions or memory-bound violations. Naturally, users cannot

be permitted to execute instructions which would halt the machine
or directly affect the I-O operations; similarly, a user cannot

be permitted to transfer data into any memory bank other than the
one in which he is currently running. On the other hand, the
routines in the Executive memory bank must be able to use I-O in-
structions and must have access to all memory locations. Since
the interrupts initiate only Executive routines, 1t was convenient
to have the interrupt system "enable" and "disable" the privileged-
instruction and memory-protection hardware. When an interrupt is
honored, the protection hardware is turned off, and all instruc-
tions and all memory references are legal. As soon as debreaking
occurs, the protection hardware 1s turned on and the machine runs
in "user mode."

The privileged instructions, which a user cannot directly execute,
include

I-0 instructions,

instructions which halt the computer,

instructions which affect the interrupt system,

instructions which affect special registers, e.g.,
the rename registers, and

instructions which refer to protected memory
locations.

Instructions may make references to any address in the memory

module in which the instructions themselves are located, or to
any address in memory bank @ (the running user's bank) except

for registers ¥-37 in memory bank @,

The protected registers in the user bank are used by
the Executive software to store information about the

12

Report No. 1673 Bolt Beranek and Newman Inc.

status of the user, and so they must not be altered
except by the Executlve., Permitting references to the
user bank from other banks allows reentrant Executive
subroutines to service the user, under his control.

If the hardware detects the use of a privileged instruction in
user mode, it stores the instruction in a speclal trap register
and generates an interrupt. This interrupt initiates an Executive
routine called the Dispatcher (see Section III) which interprets
the contents of the trap register and responds appropriately.

Many privileged instructions are defined by the system as sub-
routine calls, allowing a user program to link to Executive sub-
routines,.

The final important hardware modification was the addition of
character-manipulation instructions and of a special operating
mode called "ring mode." One of the functions that an Executive
routine must control 1s the transmission of characters to and
from the remote Teletypes. This function 1s performed by the
Teletype Service Routine (see Section V). Since this routine
runs frequently, it 1s important that it be very fast. For this
reason, instructions that address a single 6-bit byte were added.
(These instructions, of course, are useful to any character-
handling program.) Optionally, these instructions are self-
incrementing, increasing the byte pointer by one each time thé
instruction is executed. Thus, four successive executions of the
"deposit character and index" instruction which was initialized
with the address of the first (left) byte of the word X would
deposit characters in the left, middle, and right bytes of word
X and the left byte of word X+1.

Ring mode was added to facilitate circular buffering. When oper-

13

Report No. 1673 Bolt Beranek and Newman Inc.

ating in ring mode, the central processor suppresses the carry
between the third and fourth (from rightmost) bits if a self-
indexing instruction is being executed. Thus, the Teletype
Service Routlne can store incoming or outgoing characters in an
8-word circular buffer and store (or fetch) the next character by
using only a self-incrementing byte-reference instruction.

14

Report No. 1673 Bolt Beranek and Newman Inc. |

II. THE SWAPPER

The primary goal of a time-sharing system, as opposed to other
methods of computer utilizatien, is to provide each of a number
of users with immediate access to data and to processing facili-
ties. Each user is given the 1llusion that he has complete con-
trol over the functions of the computer system., Time-sharing
systems achieve this illusion by dividing the total available
computing time into small discrete time units (time quanta) and
distributing these time quanta among the system's users according
to some predetermined queueing algorithm. Because of the extreme-
ly high speeds of computers, each user still feels that his job
is being performed at computer speed. In the case of an inter-
active system, in which the user program i1s delayed by some slow
I-0 device (e.g., Teletype) or by the time spent by the user in
thinking about his problem, a given user program requests time
quanta for computation relatively infrequently. Thus, a program
engaged in computation is normally in competition for system re-
sources not wilth gll other users but with only a small percentage
of the user population.

Some time-sharing systems utilize a "paging" concept which allows
some portion of many user programs to be present in core memory

at the same time. The system decides when a new portion (page) of
a user program 1s required in core, allocates a space for the new
page, and retrieves it from some bulk-storage device. The Hospi-
tal Computer System permits only one user program to be in core
memory (for computation) at any one time; the space available is
4X words and the user may perform his own program segmentation.
When the time quantum allocated to a user program has elapsed, or
when the program becomes "hung" waiting for an external action

15

Report No. 1673 Bolt Beranek and Newman Inc.

FIGURE 2. Round-robin queue.

(e.g., I-O operation), the entire 4K of user core memory is
written out on the swapping drum and some other user program 1s
read into core. This operation is known as "swapping" and it is
controlled by the Executive routine called the Swapper. The Swap-
per administrates the queueing algorithm, making all decisions
about when to perform a swap and which user program should be per-
mitted to run next.

One simple queueing algorithm is the "round-robin" method. This
algorithm uses a circular queue of users: the user at the top of
the queue is given one time quantum and is then placed at the
bottom of the queue (see Fig. 2).

The round-robin algorithm, however, fails to account for several
problems which occur in actual practice. It does not allow for
the fact that before a quantum of time has passed the running user
may be "hung" waiting for something to happen. It also ignores
the problem of a user losing lIncoming data because the interval
between his time quanta is too long (i.e., there are too many
users).

Another disadvantage of the round-robin method is that it makes

no attempt to match the amount of time allocated to a user to the
past history of his requirements. This 1s an important consider-
ation, both from the point of view of satisfying the greatest num-
ber of users and from the point of view of minimlizing the number
of swaps performed. A reasonable assumption is that an actual

16

Report No. 1673 Bolt Beranek and Newman Inc.

QUEUE LEVEL 1 1 QUANTUM
QUEUE LEVEL 2 *F—J 2 QUANTA
QUEUE LEVEL 3 Q—J 4 QUANTA

))

) °

° —>

FIGURE 3. Multilevel queue.

user's tolerance to system delay in answering a question is some-
thing like an exponential fqnction of the actual computing time
needed to answer the question=——i.e., that the user prefers a sys-
tem that delays answering complicated questions in return for quick
response to simple questions. Thus, a queueing algorithm which
was cognizant of the user programs' past history would be able to
favor the small computer-time requests (whose users were less

tolerant of slow response) at the expense of penalizing those user

programs which demanded a great deal of computer processing time.

One answer to some of the objections to the round-robin method 1is
a multilevel queue, which has been implemented on this system. 1In
this system, there are 12 queues into which a user can be placed.
A user in the first (highest) queue is given one quantum of com-
puting time; the time allotted to a user in any other gueue is
twice the time allotted to the user in the next higher queue,
Thus, a user in queue n will receive 2’1-1 guanta of time. If a
program in gueue zn uses all the time allowed in that queue, then
the program is placed in queue n+l (see Fig. 3). On the other

17

Report No. 1673 Bolt Beranek and Newman Inc.

hand, all programs in queue 1 are allocated thelr time before any
other program is given time; similarly, programs in queue 2 are all
allocated time quanta before programs in queues 3-12, and so on,
Programs which spend a large amount of time computing move lower
and lower in the queue structure; at each downward jump, they
receive more time quanta, but wait longer to get it. On the

other hand, demands for interaction with the "outside world" cause
the program to be placed in a high queue; for example, if a user's
Teletype input buffer is almost full, his program will be placed

in queue 1,

In addition to considering the queue position of a program, the
Swapper also considers two other parameters, location and status.
Program status is a device for temporarily disregarding the queue
structure; classification by location allows the Swapper to deter-
mine which programs may be accessed without delay.

There are four possible locations for programs in the system: in
one of the two user cores, on one of the 32 swapping-drum fields,
on the swapping area of the Fastrand drum, and "in limbo." The
in-1imbo location applies to programs which have been requested,
either by a Teletype user or by another program, but have not yet
been started. (These programs do not need to be swapped into core
but will be read in by a special Executive "startup" routine.) ‘

Program location 1s used to determine whether programs are
"accessible" or "inaccessible." Programs stored on the swappilng
drum are accessible if the swapping drum is not being used. Pro-
grams on the Fastrand are accessible when the Fastrand is not al-
ready being used for swapping. In-limbo programs are accessible
when

18

Report No. 1673 Bolt Beranek and Newman Inc.

(1) there is an empty user core, or

(2) the swapping drum is not busy and has
a free fileld, or

(3) the Fastrand is not being used for a
swap and has a free field.

Programs which are already in core are not considered to be either
accessible or inaccessible,.

Programs are separated into three distinct groups on the basis of
status. Programs which need computing (central processor) time
are in runngble status. For these programs, the queues are suf-
ficient to determine allocation of time. Some programs, however,
are walting for the completion of a noncomputational event; the
event may be input or output to a Teletype or other reripheral
device, use of the I-0 Processor (IOP), the passage of a predeter-
mined amount of time, etc. These programs are in hung status but
will return to runnable status as soon as the necessary event is
completed. The third status, called wanted, includes programs

which require special attention because

(1) the user has typed the function BREAK at his
Teletype, demanding suspension of his program,
or

(2) the program is wanted for examination by the
Executive debugging system, or

(3) the program has been hung, walting for 1its
turn to use the IOP and the IOP is now ready
for it.

Finally, on the basis of queue level and location, the Swapper

19

Report No. 1673 Bolt Beranek and Newman Inc.

performs an ordering of the urgency-of-service requirements of the
programs in the system, finding a "best" (most-urgent requirements)
and a "worst" (least-urgent requirements) program. The ordering

is determined according to the following rules.

1. Programs in wanted status are better than
programs in runnable status; programs in
runnable status are better than programs
in hung status.

2. Programs which are runnable are ordered
according to their queue: queue 1 1s best;
gueue 12 1s worst.

3. Programs within a given queue are ordered
according to the number of time quanta that
they have already recelved in that queue:
the more time a program has already recelved,
the better it is. This rule approximates a
"first-in first-out" philosophy, but allows
for the fact that several programs within a
single queue may each have recelved some
computing time in that queue. (As an
example, suppose that program A, in queue
5, computes for two time quanta and then
becomes hung. Program B, also in queue 5,
then computes for three time guanta and
becomes hung. An ordering at thils time
would make program B better than program A)

The job of the Swapper can now be defined as finding the best
accessible program, and if this program is better than the worst
program in core, swapping them. As used here the word swap means
reading one program into memory from a drum storage device and
writing another program from the same area of memory onto that
device. These two operations may be performed simultaneously
when the swapping drum is used. The term one-direction swap 1s

defined to mean either one of these operations, but not both. If

Report No. 1673 Bolt Beranek and Newman Inc.

there are no accessible programs, or if the worst program in core
is as good as the best accessible program, then

(1) 4if the best program in core is not hung,
it will be run;

(2) 41if the best program in core 1is hung, the
swapper will wait for a change in the status
or location of some program. Whenever an
interrupt routine recognizes a change in a
user program's queue level, status, or lo-
cation, it notiflies the Swapper, which then
begins a new evaluation.

If the Swapper has given control to a program in core, its Jjob 1is
obviously completed. If, on the other hand, the Swapper initiates
a swap, the Swapper routine is immediately restarted from the be-
ginning for another evaluation. In thls case, the set of access-
ible programs is smaller (because of the set of programs made in-
accessible by the initiation of the swap) so that a series of
evaluations will always result in either running a program located
in a user core or walting for a change in some program's status

or location (e.g., the completion of a swap).

In addition to the organizational philosophy described above, a
number of special techniques were adopted to improve the perfor-
mance of the system, Some are merely coding tricks used to save
core space or processing time; others are modifications of the
philosophy to handle specific problems. The rest of this Section
describes the four most important of these techniques.

A. Queue Counter

The rules for finding a "best" program are, first, to find all

Report No. 1673 Bolt Beranek and Newman Inc.

the programs in the highest occupled queue and, then, to pick
the one which has already been glven the most time. Each pro-
gram has a queue counter organized in such a way as to make both
these checks possible in one operation. For a program in queue
n, the counter Cn is defined by the equation '

Cn = queue number + number of unused quanta -1.

The queue number Qn of a program in queue n is deflned as

_ An=-1
4, = 2

Recall that a program in queue n will receive 2”’1 time quanta.

Therefore, the number of unused quanta An in queue n is

-1 4 > 1.
- n-.

By simple operations, this inequality can be converted to the
inequality

ofy > +4 -1>2m1
L n n

or

There are two programming advantages to this scheme. First, a
running program can be charged for a time quantum merely by sub-
tracting one from its queue counter, Then the program has just
changed queue 1if

[(Cn) AND (Cn-l)] =0 ,

(This test must be made to determine whether the Swapper should

22

Report No. 1673 Bolt Beranek and Newman Inc.

search for a new best program.)

The second advantage to this queue-counter scheme is that the
best runnable program is the runnable program with the lowest
queue counter, Similarly, the worst runnable program is the one
with the highest queue counter. Up to this point, the queues
have been described as though they were separate lists. This is
not necessary, and in fact the allocation of sufficient space to
store 12 different queue lists would be quite inefficient. Both
space and search time can be saved by assigning each program a
fixed location in a queue-counter table. The Swapper then searches
the table for the lowest (or highest) queue counter when it is
looking fer the best (or worst) user.

The time quantum used in this system is 32 milliseconds, the
approximate amount of time required for a swap on the swapping
drum. A running program, of course, may be interrupted by some
outside event, which causes it to be swapped out after only a
fraction of this time has passed. Therefore, each program con-
tains a clock register which gives the number of milliseconds that
it has used which have not been charged to its queue counter,

This register is maintained by the Swapper, and the program's
queue counter 1s decremented only when this clock register shows
that a full quantum has been used.

B. Priority

If two programs which contain equal and large amounts of comput-
ing time are started at the same time, they will each fall to
lower queues at about the same rate and can be expected to com-

23

Report No. 1673 Bolt Beranek and Newman Inc.

plete their calculations at about the same time. This is not
always desirable, since certain hosplital services should be com-
pleted faster than program-development computations. For example,
the compilation of a laboratory report should take precedence

over a systems programmer's assembly. Accordingly, the Swapper
recognizes a priority system (not to be confused with the inter-
rupt priority system) which allows certain programs to fall to
lower queues more slowly than normal., Programs with a priority

of zero (or one) are handled exactly as described above, If an
application program, by direction of the system administrator,

is assigned a priority P (2§P§31), then its queue counter will

be decremented by 1 for every P quanta of running time. Thué, for
a priority of 14, 14 time quanta must be given to the program
before its queue counter is decremented by 1. It 1s also possible
for a program to be assigned a negative priority; in this case,
the program's queue counter is decremented by P for every single
time quantum which it receives.

Any priority system can be abused, and the system described here
is no exception. The user, however, must use the Executive system
to change his program's priority, and the Executive could have
been written to require special passwords in order to allow pri-
ority change. Instead, it was decided that the highest priority
used by a program should be included in the system statistilcs that
are kept on every user run, These statistics are available to the
system administrator, and with them he can minimize the misuse

of priority.

C. Fastrand Swapping

Ordinarily, active nonrunning programs are stored on the swapping

24

Report No. 1673 Bolt Beranek and Newman Inc.

drum (or "little drum"), This little drum is small and fast; it
can store thirty-two UK programs and complete either a one-direc-
tion or two-direction swap in 35 milliseconds. In order to

allow for more than 32 active programs, a portion of the Fastrand
(or "big drum") has been allocated to the Swapper; this portion
has the capacity to store 49 additional programs. The big drum,
however, is much slower. The amount of time required for a one-
direction swap can be computed as follows,

45 milliseconds — average head positioning
34 milliseconds —— average rotational latency
87 milliseconds —— data transfer

166 milliseconds —— average one-direction swap

A two-direction swap requires an average of 287 milliseconds
since the heads do not need to be repositioned. Even in the
rare case where latency time is zero, a one-direction big-~drum
swap takes almost three times as long as a little-drum swap.

Bigedrum swapping is actually performed by the I-O Processor.

The parameters of the I-O operation are determined by the Swapper,
but the program to be swapped out must actually execute the in-
structions which link it to the I-O Processor. (These instructions
are located in Executive core, and the instruction counter of the
program 1s set to their location by the Swapper.) In order to
allow the program to execute these instructions, its queue counter
1s temporarily set to the best possible value by the Swapper; the

queue counter 1s reset to its correct value after the swap is per-
formed.

Because of the length of time required for a big-drum swap, the

25

Bolt Beranek and Newman Inc.

1673

Report No.

‘wedabeip mo|j aaddems "¢ JYN9I4

3409 NI
WYY90dd LSYOM HLIM e
G10M dYMS ON

3400 NI
ANV ¥904d LS3d
IHL 9NINNNY

.

Af LIVM

WNnY¥a 914 0l
TOM dYMS

WNYda 3I7LL1T IHL NO O
3400 NI WYY90¥d LSyOM =C3TOM
WYY¥90¥d 3791SS300V LS38 =4vd

a7oM ®
S3IA aNI4d

ANY¥a 37LLIT OLNO
JY0I NI WY Y90ud
LSYOM dVMS

«3181SSIDIVNIw
SNVY¥90dd 0GWIT-NI
1V VN

3400 NI

JHL ONINNNY
A8 ‘LIVM

S3IA

1409 NI
NV¥904d LSHOM HLIM e
dV8 dVMS \\\1

ERTIMEEER-E
IHL OINI
dvg dvms

aNno4 dve

26

Report No. 1673 Bolt Beranek and Newman Inc.

Swapper makes several tests to ensure that programs are not un-
necessarily placed on the big drum and that, when a program is
swapped onto the big drum, it is the worst in the system., The
simplified explanation of these test 1s given below in the order
that the tests are made; these steps are also keyed to the accom-
panying block diagram (Fig. 4). Note that in each case other
than running a user program the Swapper is then restarted to

perform another evaluatilon.

1.

If there is an unused core, the best accessible
program (BAP) is swapped in and nothing is swapped
out.

If the BAP is on the little drum, then the worst
program in core is swapped with the BAP.

The BAP is now known to be in limbo or on the big
drum; the Swapper will look for an unused field on
the 1little drum. If there is an unused field, the
worst user in core will be swapped onto that field
before bringing in the BAP. Thils procedure may
require the Swapper to wait for the little drum to
complete some other operation, but, even 1f thils is
so, the program will be swapped out more rapidly than
if it were swapped onto the big drum (and i1t can be
retrieved much more rapidly).

At this point, the 1little drum 1is known to have no
unused fields, so the only way to create space in
core for the BAP 1s to swap some program onto the
big drum. If the BAP is in 1limbo and the Swapper
has already assigned some program to be swapped on
the big drum, then all programs in limbo will be
conslidered inaccessible and the Swapper will be re-
started to find a new BAP. To understand the rea-
son for this procedure, recall how a big-drum swap
is initiated. The program to be swapped out of core
is started in Executive core and executes instructions
to 1link it to the I-0 Processor. In order for this
program to be started, it must be the BAP, and 1t
won't be the BAP if the programs in limbo are ac-

27

Report No, 1673 Bolt Beranek and Newman Inc.

cessible. On the other hand, it must be started
(in order to free a core for the program in limbo).
Therefore, fallure to make the programs in limbo
Inaccessible would result 1n an endless loop within
the Swapper. A similar problem does not arise for
programs on the big drum, since they are automati-
cally inaccessible if the big drum is needed for a
previously authorized swap.

If the big drum 1s not already engaged in a swappiling
operation, or if the BAP 1s already on a big-drum
swapping field, the Swapper searches for the most
suitable program to swap onto the big drum. Although
the worst program in core could be swapped out im-
mediately, it 1is probably in core because it is
better than most of the programs stored on the little
drum; therefore, it will probably soon be the best
program 1n the system and should not be placed on the
big drum. Consequently, the Swapper examines the
status and queue level of programs both on the little
drum and in core in order to find the worst program
in core or on the little drum (WCLD). An important
feature of this search is that it 1s initlalized to
start at a different point on the 1little drum each
time that it 1s performed; therefore, any completely
inactive program on the little drum will be moved to
the blg drum in a maximum of 31 big-drum swaps. It
should also be noted that programs hung because they
need access to the blg drum for I-0 operations are
not considered when searching for the WCLD, in order
to prevent them from appearing twice in the I-O Pro-
cessor's gueue structure (see Section IV).

Now the location of the WCLD is determined. If this
program is in core, the Swapper alters 1its control
registers so that the next time that 1t is started

it will 1ink to the I-0 Processor for big-drum swap-
ping. On the other hand, if it is on the little drum
and the 1little drum 1is free, then it is swapped with
the worst program in core in preparation for big-drum
swapping. If the little drum is busy, then the Swapper
waits for the 1little drum to complete its current op-
eration by running the best user 1n core.

Report No. 1673 Bolt Beranek and Newman Inc.

D. System Overload

Occasionally, the system will be requested to create space for a
new program when the system 1is already operating at maximum ca-
pacity. If the request comes from a user Teletype, the system
responds by merely typling CALL LATER PLEASE at that Teletype.
However, the request may come from some already running program
which cannot be delayed untll space 1s avallable for the request-
ed program. In order to avoid loss of information in this sit-
uation, descriptions of all requested programs are stored in a
special 1list on the big drum. Each time that a program is added
to this 1list, an in-limbo entry 1is placed in the Swapper's tables;
the in-limbo program 1s actually a routine in Executive core which
starts the first program in the list and creates a new in-limbo
entry if there are further programs in the list, If running the
in-limbo program would exceed system capacity, the system alerts
the machine operators and "throws away" the in-limbo program (by
deleting its entry in the Swapper's tables in core) but retains
the 1list on the big drum. At any future time, the programs in

the l1list may be started either by the machine operator or by the
addition of a new program to the 1list.

29

Report No. 1673 Bolt Beranek and Newman Inc.

ITT. THE DISPATCHER

As pointed out in Section I, there is a class of privileged
instructions which user programs must not be allowed to perform
because of their possible detrimental effect on the system; these
include input-output instructions and instructions that halt the
machine, If a user program attempts to execute a privileged
instruction, the instruction 1s trapped by computer hardware and
stored in the trap register, and an interrupt 1s initiated. The
user programs, of course, must be allowed to perform I-O operations
~or halt by some mechanism, so the routine started by the privileged-
instruction interrupt was given the function of examining the trap
register and dispatching to the portion of the Executive which can
perform the desired operation for the user, This routine is there-
fore known as the Dispatcher. Since the operations which the |
earliest version of the Dispatcher performed for the user were
primarily Input-Output Transfer operations, the privileged in-
structions which were specified to cause such a linkage were

known as IOT's.,

The present Hospital Computer System uses a greatly expanded IOT
concept. From the point of view of the user programs, IOT's are
the same as machine-~language Instructions. In general, they are
more complex than machine commands, may require somewhat longer
calling sequences, and perform those operations normally assoclat-
ed with closed subroutines. Most of the IOT's fall into one of
the three following categories:

1. operations which the user programs must not be
allowed to perform for themselves —— this category
includes all I-0 operations and references to the
Executive memory bank;

30

OEaam 0 s 00 Saaaas 0 Sl seaaasl sl s

Report No. 1673 Bolt Beranek and Newman Inc.

2. operations which are common to many user programs,
especially programs which implement hospital applica-
tions —— this category includes routines for storage
and retrieval of individual items in tree-structured
hospital records, conversion of numbers in date or
decimal format to internal code, and floating-point
arithmetic; :

3. 1linkage to two system "interpreter" routines, called
Job Hunter and Syntax Verifier, which are used by all
hospital-applications programs. Job Hunter 1s a ques-
tionnaire administrator that provides standard methods
for formatting questions, correcting erroneous answers,
and branching around questions made unnecessary by pre-
vious answers. Syntax Verifier provides a standard
method of specifying the syntax of possible user input
and determining which of a number of possible user in-
puts (including invalid input) was actually given.

A block of user core memory (registers U08—728) is reserved for
temporary storage for the IOT routines. (These registers are not
protected by hardware, as are registers 08—378, but protection is
unnecessary since user-written code is not executed during the
execution of an IOT.) With all temporary storage used by IOT's
allocated to the user memory block, it is clear that the IOT's

can be written as reenterable subroutines; thus a user program
may be swapped out during the execution of an IOT. In actual
practice, IOT's which have high execution speeds are executed out
of user mode on interrupt level 16 (i.e., before debreaking),
thereby preventing initiation of the Swapper which 1s on interrdpt
level 17 and, therefore, of lower priority. Slower IOT's, in par-
ticular Job Hunter and Syntax Verifier, are executed in user mode
(i.e., after debreaking) so that swapping of programs using these
I0OT's is very likely to occur.

The execution of an IOT 1is performed according to the following
steps.

31

Report No. 1673 Bolt Beranek and Newman Inc.

A. The privileged instruction (IOT) in the user program
is encountered by the central processor and trapped
by the hardware. An interrupt is generated and the
hardware registers associated with the user program,
including the program counter (which specifies the next
instruction to be executed in the user program), are
stored in Executive memory.

B. The Dispatcher, which is started by the interrupt,
reads the trap register and decodes the IOT by means
of a table lookup on seven bits of the trap register.
This lookup yields the address of the Executive routine
required, and a branch is made to that address.

C. Each routine decodes an additional six bits of the
trap register to determine which of wvarious options
may have been requested for the basic IOT. If the
IOT has a high execution speed, it is executed and
the routine debreaks to the user program. In cases
where the IOT will be executed in user mode, the user
registers stored by the interrupt are transferred
from Executive memory to the user-memory area reserved
for I0T's and the debreak address 1s changed to the
address (in Executive memory) of the appropriate IOT
routine., Debreaking then occurs, starting the IOT
routine 1in user mode instead of starting the user pro-
gram,

Notice that if a user program which is using a slow IOT is swapped
out, the location, saved by the Swapper, at which the program will

be restarted later is a location in the IOT routine in Executive

memory. Also, the eventual point of return to the user program

is stored in, and therefore swapped out with, the user memory
block. Any other program which is swapped in between time periods
allotted to this user program may use any I0T since no user-pro-
gram information has been saved in the Executlive memory. Finally,
the slow IOT routines may themselves use fast IOT's (for example,
Job Hunter uses Teletype IOT's) without any loss of information!

32

¥y} Sumem O o o S pra— o o — . | — [] [. R

Report No. 1673 Bolt Beranek and Newman Inc.

in fact, the slow IOT routines return to the user program by means
of a special "return" IOT that moves the user registers from user
memory back to the special interrupt locations and then debreaks.

IOT's communicate with the user programs in several ways. Many
IOT routines transfer information through two special hardware
registers accessible to all programs, the "Accumulator" and the
"I-0 register." In addition, some IOT's cause information to be
transferred to user-program buffer areas; these areas are frequent-
ly defined by a prespecified block of pointers immediately follow-
ing the privileged instruction in the user program, Other IOT's
indicate the success or failure of an attempted operation by re-
turning to the user program at one of a seriles of prespecified
points, normally the first, second, third,or fourth location
following the privileged instruction, The IOT to "reserve the
paper-tape punch," for example, will return to the first location
after the privileged instruction if the punch 1s already reserved
by some other program, or to the second location if the punch has
been successfully reserved.

A few IOT's are designed to delay execution of the user program
for a given length of time or to restart a user program at a
specific time. These time-dependent functions require the IOT
routines involved to have some knowledge of the passage of time
in the real world. For this reason, there are two clocks which
interact with these routines, a one-second clock and a one-minute
clock. The one-second clock is used to measure delay times and
the one-minute clock allows the Executive to keep track of the
time of day.

Some privileged instructions, of course, will be errors in the

Report No. 1673 Bolt Beranek and Newman Inc.

user programs, Some of these will appear to the Dispatcher to

be valid IOT's but execution of them in the controlled environ-
ment of the Executlive will at worst damage the user program.,
Others will be recognized as errors; in this case, the Dispatcher
will transfer the speclial interrupt registers assoclated with the
user program to user memory (in the IOT area) and write the user
program on the Fastrand drum for later examination by the pro-
grammer, The Dispatcher then termlinates the program by branching
to the normal "halt" IOT routine.

34

Report No. 1673 Bolt Beranek and Newman Inc.

IV. THE I-0 PROCESSOR

The I-0 Processor (IOP) is that portion of the Executive system
that handles the manipulation of data on the Fastrand drum and
on magnetic tape. The Fastrand system and the magnetic-tape
system are logically independent from the user's point of view;
their interaction within the IOP 1s dealt with briefly at the
end of this Section.

The magnetic-tape equipment, which 1s discussed at the end of
this Section, includes two tape drives and a tape controller
capable of spacing the tape forward or backward by record, file,
or reel and of transferring information between the Data Channel
and either tape drive,

The Fastrand drum provides storage for approximately 19.7

million words., A set of movable heads can be positioned over

any one of 96 tracks, each of which is subdivided into 4,096
50-word sectors. Each sector, in addition to a storage capacity

of 50 data words, contains a tag word which can be used for
"linking" information. A sector 1s the smallest addressable unit
of drum storage. The drum hardware also includes a drum controller
to control movement of the boom, on which the read/write heads are

mounted, and to transfer information between the Data Channel and
the drum,

Conceptually, the drum is divided into thirds, each having 32
track positions. The allocation of various types of data to
specific thirds 1s by convention as follows.

35

Report No., 1673 Bolt Beranek and Newman Inc.
Third se
@ Active Patient Record Files
1l Program Library and Programmer's Filles
2 Research Files

Each third is divided into 128 quarter-tracks; each quarter-track
is composed of 1024 sectors. A quarter-track can be in one of
threé conditions: available (i.e., empty and unowned), free, or
held. Data such as permanent file structures, libraries, and
permanent programmers' files are stored as free information. Free
‘quarter-tracks may be written on (or expunged from) by any user
program (provided that it presents the appropriate own-word). A
held quarter-track 1s owned by one user program; only that program
can write on, change, or expunge from it, although any program can
read 1t, Held quarter-tracks are used for temporary storage—that
is, for program segments, scratch areas, and temporary file stor-
age., When a user program halts, its held quarter-tracks are re-
turned to avallable status. If a user program expunges all in-
formation on a held or free quarter-track, that quarter-track 1s
returned to available status.

The I-O Processor automatically assigns quarter-tracks to held

or free use, depending on the type of "write" IOT which 1s exe=-
cuted. The I-0 Processor keeps track of the locatlions of avail-
able sectors within each quarter-track. If a user program writes
"nonaddressed," it leaves it to the I-O Processor to put the informa-
tion into the next free sector or sectors; if it writes "addressed,"”
it specifies the location of already exlisting information to be
written over., If a user program writes "nonaddressed held,"

the I-0 Processor puts the information into space on a guarter-

36

4

P S NUU [[[IS [R pu—

Report No. 1673 Bolt Beranek and Newman Inc.

track held by that user program, assigning a quarter-track to
held use if there is no more space available on the user program's
currently held quarter-track(s).

There are two formats for data storage on the drum: the block
and the 1tem. A user program can write a fixed length of infor-
mation, called a block, which consists of precisely 50 words and
is stored in one drum sector. An item 1s variable length and
offers a more flexible means for storing information on the
drum. Its format 1n core 1s as shown in Fig. 5, with the "word
count" equal to the number of words in the item. On the drum,
the formats are allocated as shown in Fig. 6.

To prevent certaln time-sharing problems and to protect the drum
from accidental changing (rewriting) or expunging, two mechanisms
have been included: the rewrite number and the own-word., The
rewrite number follows the word count in each item (as is illus-
trated 1n the preceeding diagram). This number is incremented by
one each time an 1item is rewritten (written addressed). When
rewriting or expunging an item, the I-O Processor compares the
rewrite number of the item 1n core with the corresponding number
on the drum. If they are the same (i.e., no one else has re-
written this item since the current user program read it), the
rewrite number is incremented by one and the item is rewritten.
If the rewrite numbers are not the same (i.e,, someone else has
rewritten thils 1tem since the current user program read it), no
writing takes place, and a "rewrite error" message is transmitted
back to the user program. Thus the rewrite-number concept permits
simultaneous updating of a file by two or more user programs,
while preventing the overlapped updating of a particular item

in the file.

37

Report No. 1673 Bolt Beranek and Newman Inc.

WORD COUNT

REWRITE NUMBER

DATA

FIGURE 5. Item format in core memory.

WORD ADDRESS OF ADDRESS OF
THIS SECTOR SECTORDb

OWN-WORD

ONE »
SECTOR] WORD COUNT SECTOR o
DATA

REWRITE NUMBER

DATA

- e —_— — — -

ADDRESS OF
SECTOR ¢

ADDRESS OF
SECTOR q b SECTOR®

DATA

ADDRESS OF
SECTOR a [SECTORc

DATA

J

FIGURE 6. Block and item formats on Fastrand drum.

38

. | [.)} [] []

Pr—. F .]

[[S [R

Report No. 1673 Bolt Beranek and Newman Inc.

The own-word 1s another protective device. When an item is
written nonaddressed, the user program specifies an own-word to
be permanently associated with that item on the drum. Whenever
a user program attempts to rewrite or expunge an item, it must
present the word that matches the item's own-word. This method
of identification helps to protect files from accidental destruc~
tion by programs under development.

In order to allocate storage space as it is requested, the I-0
Processor must maintain information about the status of each
quarter-track and about the status of sectors within each quarter-
track. One possible method is to maintain all free space as
threaded 1lists, each unused sector or quarter-track pointing

to the next., Using this method, however, makes it almost im-
possible for the I-O0 Processor to perform any optimization of
storage allocation, since no Executive routine could have access
to a 1list of all unused quarter-tracks at one boom position with-
out performing a prohibitive number of drum reads. For this
reason, information about the status of each sector or quarter-
track 1s instead maintained in tables in Executive memory. One
table contains one word for each of the 384 quarter-tracks on

the drum. The quarter-tracks are specified as free, held, or
unusable (i.e., physically damaged), and empty, full, or partially
full., The I-O Processor uses this table in an attempt to min-
imize future boom movement when assigning additional quarter-
tracks to a user program.

The first two sectors of each quarter-track on the Fastrand are
allocated for use by the I-0 Processor. These two sectors, com-
prising only 0.2% of the storage capacity of the quarter-track,
are used as an avallability table for the rest of the sectors,

39

Report No. 1673 Bolt Beranek and Newman Inc.

one bit per sector specifying either "used" or "available." The
two sectors are read into one of four tables in the Executive
memory when the quarter-track on which they are located is being
modified. The I-O Processor uses the table in memory to locate
avallable sectors, changes the table as additional sectors are
used, and rewrites the table on the Fastrand when necessary (as
described below). Each of four sector-availability tables in
Executive memory ("Table 1" through "Table 4") contains the
avalilability information for one quarter-track. Table 1 is
assigned to the quarter-track being used for nonaddressed writes
on third @. Tables 2 and 3 are used 1n a like manner for thirds

1l and 2. Table U4 is used for held writes and held or free rewrites
on all thirds of the drum. Tables 1, 2, and 3 need to be written
out only when the corresponding aquarter-tracks are completely
filled. Because the contents of Table 4 relate to quarter-tracks
designated by the user programs, Table 4 is written back onto

the drum and reset with informatlion about another quarter-track
very frequently.

Any of the Fastrand operations which a user program may perform
(via IOT's) reaches the I-O Processor as one of four basic op-
erations

read, rewrite, nonaddressed write, or held write.

Each of these operations requires certain preconditions to be
satisfied before the desired information transfer can occur;

the preconditions can frequently be satisfied by the I-O0 Processor
while the user program is being swapped into core in "IOP wants"

status. The preconditions for each basic operation are as follows.

A. PFRead

1. Have the boom positioned on the track specified
by the user program.

40

Report No. 1673 Bolt Beranek and Newman Inc.

B, Rewrite

1. Have the boom positioned on the track specified
by the user program,

2. Have the avallability table for the aquarter-track
specified by the user program in Table A

C. Nonaddressed write

1., Have the boom positioned on the track being used
for nonaddressed writes on the third specified
by the user program,

2. Have a list of the addresses of the necessary
number of free sectors in the quarter-track to
be used; this 1list is generated by the I-O Pro-
cessor from Table 1, 2, or 3.

D. Held write

1., Have the boom positioned on the track specified
by the user program,

2, Have the avallability table for the quarter-
track specified by the user program in Table 4.

3. Have a list of the addresses of the necessary
number of free sectors in the quarter-track spec-
ified by the user program; this list is generated
by the I-0 Processor from Table 4 and used for
nonaddressed held writes.

The I-0 Processor contains subroutines to perform the actions

needed to fulfill each of the three possible preconditions, as

well as routines which handle special cases, such as the assign-
ment of a held quarter-track to a user, Note that one precondi-
tion—namely, having the correct availability table in Table LT
may require drum writing and reading operations to be performed;
in any case, if the boom is moved, the current contents of Table

Report No. 1673 Bolt Beranek and Newman Inc.

4 may have to be written out (if it has been altered) before the
move 1is performed.

The I-O0 Processor 1lnteracts with three different priority inter-
rupt levels, in addition to IOT interpretation by the Dispatcher
on interrupt level 16. All data transfers take place via the
Data Channel, which is connected to interrupt level 1. The Fast-
rand~drum controller and the magnetic-tape controller are con-
nected to interrupt level 4, and various table-manipulation rou-
tines are started by interrupt level 15. Driving the I-0O Pro-
cessor through several interrupt levels instead of one makes the
I-0 Processor more complicated but allows its functions which are
not time-dependent to be interrupted by other system functlons
which are time-dependent.

Perhaps the easiest way to see the interrelationship of the
various interrupt levels 1is to follow a user through the I-O
Processor. When the user program's Fastrand IOT 1s trapped, the
Dispatcher branches to one of a number of I-0 Processor routines
which interpret the IOT and construct two control words; these
specify which of the four basic operations the user requires and
the address of the desired quarter-track, if applicable. The
control words, together with a pointer to the user program's

queue counter (in the Swapper area of Executive memory), are then‘

entered in an I-0 Processor queue of user programs walting for
the Fastrand. The user program's status 1s set to "IOP hung"

and the Swapper 1s alerted to conduct an evaluation. If the
Fastrand 1s not being used, the IOT routine generates an interrupt
on level 4 (by means of a coded instruction) before debreaking
(see second following paragraph); usually the Fastrand is already
in use and debreaking on interrupt level 16 occurs immediately.

Report No., 1673 Bolt Beranek and Newman Inc,

When the current Fastrand-user's data transfer is completed, the
Data Channel generates an interrupt on interrupt level 1. The
I-0 Processor charges the user program's queue level counter for
the time spent dolng the data transfer, sets the user program's

status to "runnable,"

sets its program counter to the appropriate
return from the Fastrand IOT, and notifles the Swapper that a
user program's status has changed. The interrupt level 1 routine

then generates a level 4 interrupt and debreaks from level 1

The interrupt on level 4, which is generated by code in either

a level 16 or a level 1 routine, activates a portion of the I-O
Processor which determines whether there are any programs walt-
ing for the Data Channel. If there are no programs waiting,
debreaking occurs. If at least one program is walting, the level
4 routine generates a level 15 interrupt and debreaks.

The interrupt on level 15 activates a queue-sorting routine in the
I-0 Processor; thls routine examines the Fastrand queue and finds
the best waitling user program, i.e., the user program with the
lowest queue level counter (the queue level counter is described
in Section II of this report). The control words for this user
program are moved to an I-0O Processor communication area, the
program's status 1s set to "IOP wants," a level 17 interrupt is
generated to notify the Swapper, and a level 4 interrupt is |
generated.

The level 4 interrupt, generated on level 15, starts a routine
which begins to satisfy the preconditions implied by the user
program's control words. Most of the actual work must be done
by subroutines which 1ink the level 4 routine to routines on
other levels; for example, Table 4 must be written out and

Report No. 1673 Bolt Beranek and Newman Inc.

refilled on level 1 because thls operation requires data trans-
fers, and the list of block addresses, if needed, is made up by
a level 15 routine. The level 4 routine is primarily a control
routine; the only Fastrand activity performed on level 4 is boom
movement, in the case when Table 4 does not need to be written
out and the Data Channel 1s performing a magnetlc-tape data
transfer. At the same time, the Swapper 1s bringing the user
program with "IOP wants" status into core, and, when this oper-
ation 1s completed, the Swapper generates an interrupt on level
1l to notify the I-0O Processor.

Finally, when the user program is in core and the level 4 routine
has satisfied as many preconditions as possible, the level 1
routine stops debreaking to lower interrupt levels and assumes
control. Any remaining preconditions are satisfied (if a block
address list must still be generated, 1t 1s generated by level

15 routines which return to level 1) and the data transfer 1is
started. The routine on level 1 then debreaks and the cycle is
complete.

The preceding discussion has taken very little account of the
fact that two magnetic-tape drives are also controlled by the
I-0 Processor and must transfer information by means of the Data

Channel. Avallable to user programs are IOT's which space magnet-

ic tape forward and backward by record, forward by file, rewind
tape, and reserve and release tape drives, as well as IOT's which
read and write one record at a time. Reserving and releasing
tape drives, of course, do not require the use of the I-O Pro-
cessor, and, with the exception of reading and writing, all other
magnetic-tape operations can be performed by the interrupt level
4 routines. The flow through the I-O Processor of user programs

Ly

Report No. 1673 Bolt Beranek and Newman Inc.

waiting to use the magnetic tape is i1dentical to the flow of those
using the Fastrand drum. A queue of tape users 1s malntalned by
the level 15 and level 16 routines. Unlike boom movement, how-
ever, tape movement without information transfer is always per-
formed on level U, |

It would, of course, be impermlissible for elther the tape users
or the drum users to monopolize the Data Channel, and the order
of priorities necessary to prevent this 1s administered by the
level 4 routines as follows.

A. The "best" tape user ready for level 1 has priority
over all other Data Channel users.

B. The "best" drum user ready for level U has priority
of access to the level 4 routines.

Thus, even if there are user programs wailting for both the tapes
and the drum, the drum users will be made ready for use of the
Data Channel while the tape system 1s using it, and vice versa,
The load on the tape system 1s normally quite light, and this
alternation of Data Channel use has proved to be a satisfactory
solution, although heavier tape use might necessitate a more
complex scheme.,

b5

Report No. 1673 Bolt Beranek and Newman Inc.

V. TELETYPE SERVICE ROUTINE AND OTHER "SLOW" I-0

ber of routines which drive "hard-copy" I-O devices. All of
these devices are so slow that the user programs communicat-
ing with them must not be allowed to monopolize the user memory
bank while the devices are sending or receiving messages. De-
vices which fall into this category, with their associated
interrupt levels, are the following:

Device Interrupt Level

Paper-tape reader

In addition to the I-0 Processor, the Executive contalns a num- I
Line printer

Paper-tape punch 12
Console typewriter 14
Teletype-terminal scanner 6

Interrupts are generated each time that the device is ready to ac-
cept another character (output devices) or each time that a charac-
ter is received at the computer (input devices). Input and output
on these devices are controlled by two asynchronous processes. In-
formation is moved between the user memory bank and buffers in Ex-
ecutive memory by means of IOT's activated by the user program. In-
formation is transferred between the Executive memory buffers and |
the actual I-O device by the "service routines" activated by inter-
rupts.

The Teletype service routine drives 64 devices rather than one,
and each of the Teletypes is an interactive device at a remote
location. With the exception of these special problems, however,

all the I-0 service routines are essentially the same.

46

Report No. 1673 Bolt Beranek and Newman Inc.

Circular buffers for each of the slow I-O devices are maintained
in Executlive core. Buffer space 1s allocated according to the
speeds of the devices and the number of bits required to specify
a character; Table II summarizes the buffer allocation. Each
I-0 service routine has two functions:

1. sending I-O commands to the device when appropriate;
and

2. notifying the Swapper that the user program should
be run each time that the buffer is almost full (for
input) or almost empty (for output).

Suppose, for example, that a user program has computed a set of
values which it wishes to punch on paper tape. The user program
first requests connection to the paper-tape punch by means of a
two-return IOT; the first return is used if the punch is held by
another program, otherwise the punch is assigned to the requesting
user. When connection to the punch has been successfully completed,
the user program sends characters (or 3-character binary words)

TABLE II. Buffer allocation for slow I-0 devices.

Device Data Rate Buffer Length Buffer Capacity
(characters/sec) (words) (charactgrs)
Paper-tape reader 400 128 256
Line printer 300 150 450
Paper-tape punch 63 32 32
Console typewriter 12 32 96
Teletype (1 of 64) 10 8 24

47

Report No. 1673 Bolt Beranek and Newman Inc. 3

to the punch buffer one at a time by means of another IOT. This
IOT includes special checks for buffer-empty and buffer-full con- ;

ditions. If the buffer is empty when a character is sent to it,

the IOT causes an interrupt on the paper-tape punch level which _

"awakens" the punch service routine. If the transﬁission of a
character from the user program to the buffer causes the buffer
to be filled, the IOT places the user program in "punch-hung"

fr—

status and notifies the Swapper that an evaluation of user pro-
gram status should be made.

The punch service routine, upon receipt of an interrupt, locates

|

the next character in its buffer and transmits it to the punch.
The routine then checks to see if the buffer is "almost empty,"
i.e., within a few characters of being empty. If the buffer is]
almost empty, the routine places the punch user 1n one of the

highest queues, cancels the "punch-hung" status, and notifies

the Swapper that an evaluation should be made. If the buffer

is completely emptied, the routine merely debreaks; it willl be
restarted by the character-transfer IOT when the buffer-empty

condition is discovered.

Finally, when the user program has completed transmission of its
message, another IOT 1s used to relinquish control of the punch.
Even 1f the user program omits this step, the "halt" IOT causes

all devices held by the program which 1is halting to be released.

Input is handled in much the same way as output. For example,
to read a message from paper tape the user program would first
obtain control of the paper-tape reader and then request a char-

pmm—|

acter. This request would cause the reader to be actlivated by

an interrupt and the user program placed in "reader-hung" status.

[— e —

48

prn—ll

Report No. 1673 Bolt Beranek and-Newman Inc.

Reading would proceed, one character at a time, until the buffer

' at which time the reader service routine

became "almost full,'
would place the reader user in one of the highest queues, remove
the "reader-hung" status, and notify the Swapper that an evalua-
tion should be made. If the reader buffer became completely full,
the reader service routine would stop the reader until it was re-

activated by an IOT.

As previously mentioned, the Teletypes pose several additional
problems, related to the fact that they are both input and out-
put devices and are used interactively. All Teletypes are inter-
faced with the computer through a terminal line scanner (or 1line
concentrator). This scanner not only generates an interrupt

when a character is transmitted but also indicates on whigh of
the 64 Teletype lines the transmission took place. Thus, when
activated by an interrupt, the first action of the Teletype
service routine is to determine the line number of the line caus-

ing the interrupt.

A separate buffer is assigned to each line. When a buffer is
almost full or almost empty, a table is consulted to determine
which user program is associated with that buffer.

Programs in this system normally deal with 6-bit characters while
the Teletypes use ASCII code (7 information bits, one parity
bit). Rather than have each program perform the appropriate
character translation, the Teletype service routine translates
each character, as it is transmitted, by means of a table look-
up. The 63 most common characters are coded as 6-bit characters;
the 64th possible character is used as a "warning character. "
An additional 64 less commonly used characters are coded in

kg

Report No. 1673 Bolt Beranek and Newman Inc.

12 bits, the first 6 of which constitute the warning character,

Thus, the user programs may use all ASCII characters, but alpha-
numeric information and common symbols require only six bits of

storage.

Some additional problems of Teletype use require a brief descrip-
tion of the actual hardware involved. The connection between

the computer and any single Teletype 1is a loop of wire, beginning
and ending in the computer room. This loop can be thought of as
directional, passing through various pleces of hardware in the

~ order described below, The equipment 1s capable of sending or
receiving 10 characters per second; each character consists of

11 bits. A bit 1s represented by the presence or absence of a
current through the wire for 1/110 second. Presence of a cur-
rent represents a one; absence of current represents a zero.

The equipment arrayed along the transmission wire includes the
following.

A, Computer Room (send)

1. A continuous source of one's (that is, a
current source).

2. A computer send station—equipment capable
of temporarily breaking the current flow to
send zero's under control of the computer.

B. Teletype

1. A Teletype send station, operating under con-
trol of the keyboard, functionally identical
to the computer send station.

2. A Teletype receive station, which interprets
the signals on the line and delivers the
characters that they represent to the Teletype
printing and carriage control mechanisms.

50

fa—— m— | [[re——i | | [ra— [r— [l S | [. | N S [O | [|

Report No. 1673 Bolt Beranek and Newman Inc.

C. Computer Room (receive)

A computer receiver which interprets the signals
on the line and delivers the characters to the
scanner, The scanner sends an interrupt to the
computer when a complete character has been re-
ceived.

Of the 11 bits per character, only eight are used for the ASCII
code. These are preceded by an "activation" bit (always zero)

and followed by two "deactivation" bits (always one's)., The
activation bit notifies the two receivers that a character is
arriving; thus, an inactive Teletype will cause no "character re-
celved" 1interrupts since no activation bits will be present. The
deactivation bits are needed to synchronize the Teletype receiver
with the computer.

Note that a character transmitted by the computer send station
will be received both at the Teletype and at the computer receive
station, and will cause a "character received" interrupt in the
same way as a character originating at the Teletype send station.
This 1s called the "echo" character and can be used, if desired,
to verify the correct operation of the transmission line. The
arrival of the echo character also indicates that the line is

free for transmission of another character by the Teletype service
routine.

Each Teletype is equipped with a BREAK key (ASCII, "NULL"), which
works differently from the other Teletype keys., Depressing the
BREAK key breaks the transmission wire; that is, it sends a
continuous stream of zero bits as long as it is depressed., The
use of the BREAK key is intended to signal to the Executive that
the user wishes to terminate current operations and start some-

51

Report No. 1673 Bolt Beranek and Newman Inc,

thing else. Notice, however, that before the system can do any-
thing for the user it must determine if he has closed the line
(taken his finger off the BREAK key) so that other transmission
is possible. Note that the user may break during computer-to-
Teletype operation, as well as at other times,

The Teletype service routine checks all received characters (in-
cluding echo characters) for the presence of a break, which is
received as eight zero bits. As soon as a break is detected,
some other character ("A") is sent to the Teletype. If the next
. echo character received is "A," then the line has been closed;
otherwise, the process is‘repeated. When the line has been clos-
ed, the user program is notified that a break has been receilved.

The character chosen for "A"™ is of particular importance. It
should be a nonprinting character, if possible, in order to elim-
inate possible user confusion. More important, recall that the
deactivation bits exist for the purpose of synchronizing the
Teletype with the computer. Since the deactlvation bilts are not
transmitted during a break, it is possible (in fact, probable)
that the Teletype will lose synchronization, so "A" should contain
as many one bits as possible to reestablish synchronization. The
character chosen, therefore, is "RUBOUT," which is nonprinting

and consists of 8 one bits.

It is common for a Teletype to be unplugged from the transmission
line, thus generating a "permanent" break. This situation causes
the reception of 10 meaningless characters each second, each of
which must be processed as a separate interrupt. To avoid wast-
ing time on lines which are unplugged, the Teletype service rou-

tines count the number of consecutive break characters received

52

Report No. 1673 Bolt Beranek and Newman Inc.

on each line., After 64 consecutive break characters (6.4 seconds),
the line 1s considered unplugged and additional interrupts are
ignored, except to check for the character "ALT MODE." TIf a Tele-
type 1s eventually plugged into the line again, the user may re-
gain service by typing the "ALT MODE" character. |

53

